skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Frauenfelder, Urs"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this article, for Hamiltonian systems with two degrees of freedom, we study doubly symmetric periodic orbits, i.e., those which are symmetric with respect to two (distinct) commuting antisymplectic involutions. These are ubiquitous in several problems of interest in mechanics. We show that, in dimension four, doubly symmetric periodic orbits cannot be negative hyperbolic. This has a number of consequences: (1) All covers of doubly symmetric orbits are good , in the sense of Symplectic Field Theory (Eliashberg et al. Geom Funct Anal Special Volume Part II:560–673, 2000); (2) a non-degenerate doubly symmetric orbit is stable if and only if its CZ-index is odd; (3) a doubly symmetric orbit does not undergo period doubling bifurcation; and (4) there is always a stable orbit in any collection of doubly symmetric periodic orbits with negative SFT-Euler characteristic (as coined in Frauenfelder et al. in Symplectic methods in the numerical search of orbits in real-life planetary systems. Preprint arXiv:2206.00627 ). The above results follow from: (5) A symmetric orbit is negative hyperbolic if and only its two B - signs (introduced in Frauenfelder and Moreno 2021) differ. 
    more » « less
  2. In this paper, we study the limit behavior of a family of chords on compact energy hypersurfaces of a family of Hamiltonians. Under the assumption that the energy hypersurfaces are all of contact type, we give results on the Omega limit set of this family of chords. Roughly speaking, such a family must either end in a degeneracy, in which case it joins another family, or can be continued. This gives a Floer theoretic explanation of the behavior of certain families of symmetric periodic orbits in many well-known problems, including the restricted three-body problem. 
    more » « less